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Numerical Steady-State Analysis of
Nonlinear Microwave Circuits

with Periodic Excitation

CARLOS CAMACHO-PENALOSA, MEMBER, IEEE

Abstract —A new method for determining the steady-state response of

nonlinear microwave circnits with periodic excitation is proposed. The

method minimizes time-domain calculations by introducing a criterion for

selecting the variables to be considered as unknowns and for solving the

resulting nonlinear system by a new and efficient algorithm. It has ex-

hibited the capability for handling a large number of harmonics and

nonlinearities. To illustrate the generality and usefulness of the method, a

pumped diode and a MESFET frequency doubler are analyzed.

I. INTRODUCTION

T HE OPTIMUM design of microwave circuits contain-

ing nonlinear solid-state devices requires an accurate

technique for predicting their nonlinear performance. The

most common techniques are based on the analysis of a

circuit-type model which simulates the nonlinear behavior

of the device. Much work has been done on microwave

solid-state device modeling and it is possible to find ap-

propriate models for practically any device. However, the

high computational cost of the numerical methods used to

analyze the interaction with the external circuit is the

major drawback of these techniques.

Nonlinear microwave circuits have two important fea-

tures: 1) the device-external circuit model usually includes

many linear elements; and 2) in most cases the excitation is

periodic and only the steady-state response is required. The

harmonic balance method is preferable to time-domain

techniques because it avoids the numerical integration of

the circuit dynamic equations, but it has a serious disad-

vantage in the large number of unknown variables.

In order to reduce the number of unknown variables,

several authors have proposed separating the nonlinear

network into linear and nonlinear subnetworks, and con-

sidering as unknowns the voltages/currents [1], [2] or the

power waves [3] at all the terminals. However, no general

rules for optimum circuit partitioning have been given.

After partitioning, frequency-domain and time-domain

equations are written for the linear and nonlinear subnet-

works, respectively. The response of the network is then

described by a system of nonlinear equations whose un-
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knowns are the harmonic components of the electrical

magnitudes at the terminals.

Several numerical techniques have been employed to

solve this nonlinear system. Nakhla and Vlach [1] proposed

using a gradient technique for minimizing a certain error

function. Filicori et al., [3] used the Newton–Raphson

method and avoided convergence problems by increasing

step-by-step the nonlinearities of the system. Both methods

consume excesive computer time because they must calcu-

late derivatives and, as a result, they become impracticable

when many harmonics and/or nordinearities are consid-

ered. One interesting technique has been reported by Hicks

and Khan [2], which has exhibited good convergence char-

acteristics when a large number of harmonics are consid-

ered and only does one calculation of the functions per

iteration.

In this paper, an analysis method is described which

avoids the partitioning problem by introducing a criterion

for selecting the variables to be considered as unknowns

and solving the resulting nonlinear system by a new and

efficient algorithm. This method reduces time-domain

analysis to the computation of currents and/or voltages at

the nonlinear elements from the variables they depend on,

and consequently, takes full advantage of the linearities of

the network. The waveguide diode mixer analyzed by Kerr

[4] is used to compare the iteration algorithm herein pro-

posed with the one by Hicks and Khan. As a demonstra-

tion of the capability and usefulness of the method, a

general nonlinear MESFET problem including large-signal

amplifiers, frequency converters, and harmonics generators

is studied. One application, a MESFET frequency doubler,

is completely analyzed.

II. METHOD

Consider the situation represented in Fig. 1, where an

M-port arbitrary network, which contains both linear and

nonlinear elements, is excited by M periodic sources (P-

voltage generators and Q-current generators, hence M = P

+ Q) all with the same period. It is assumed that a

steady-state solution exists and the objective is to find it.

Every nonlinear element of the network can be consid-

ered either as a voltage generator or as a current generator,
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Fig. 1. The general nonlinem problem,

controlled by other voltages and/or currents of the circuit.

Let T+ U be the number of nonlinear elements (T-voltage

generator-type elements and U-current generator-type ele-

ments) and let of(t), u;(t), co“,u~(t), i~(r), ij(t), ”” “,i; (t)

be the voltages and currents controlling all the nonlinear

elements. The aim of the method is to consider these

voltages and currents as the unknown variables. Note that,

by this way, time-domain analysis is reduced to the compu-

tation of the response (voltage or current) of every nonlin-

ear element from the magnitudes it depends on and that

the nonlinear problem is solved if these magnitudes are

determined.

The circuit in Fig. 1 can be rearranged in the way

indicated in Fig. 2 where a (M+ R + S + T + U)-port

linear network, which includes all the linear elements of the

primitive circuit, has M ports excited by independent

sources, R ports open-circuited, S ports short-circuited,

and each of the other T + U ports loaded by one nonlinear

element. The voltages and currents at the open-circuited

and short-circuited ports, respectively, are the variables

controlling all the nonlinear elements. If these magnitudes

are known, voltages and currents at the nonlinear elements

can be calculated and, after that, any electrical magnitude

of the circuit can be obtained by linear transformations.

If the network is in the steady-state with periodic re-
sponse of period TO, there will only be n$o (n-integer)

frequency components in the circuit and every magnitude

can be expressed by Fourier series

x(t) = ~ Xmexp(jntiot) (1)
~=.~

with UO= 2T/T0 = 2mfo.
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According to Fig. 2, it is possible to write for every

frequency of interest

=[A~]. (2)

where J7:n, I:n, ~n, I;, n, ~~~, md l;. are the Fourier
coefficients of the functions rJf(t), i;(t), o;(t), i~(t), u?(t),

and i:(t), respectively, and [A.] is a matrix of (R + S)X(T

+ U; M) elements obtained by linear analysis of the

network at the frequency n~o. .,
Since Vi., V<’,”” O,V$, n, I;, n, I;,.,. ” “,I~,m are nonlin-

ear functions of u;(t), v;(t), o” “,u~(l), i:(l), i~(l),”” “,ii(t),

the relation (2) is equivalent to an infinite system of

nonlinear equations of the form

xi, ~ = %.(X1,X2 *”””, XR+S) (3)

where

i 1,2,...,R+S

n 0,1,2,”””

‘i (Xi,l> ‘i,z? “ “ “ ).

If only N harmonics are considered the problem is

reduced to solving a system of (N+ 1)(R + S) nonlinear

equations. Its solution can be numerically found using the

iteration technique defined by the expression

(A”,n)k+l=(E,.)k

+ [(x>H)k-(K,n)k-ll”[(L,n)k-(E>n)kl
[(~,n)k-(z,.)kl-[( E,n)k-l-(z,n)k-11-

(4)

Note that the proposed iteration technique is a direct

iteration “corrected” to take into account the behavior of

the functions in the last two iterations and that it is only

necessary to compute the values of the functions ~,. at

each step.
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Fig. 2. The general nonlinear problem (rearranged),

The iteration formula (4) fails if the denominator of the

“correction factor” is equal to zero. In this case a direct

iteration is used, i.e.,

(A,n)k+, =(<,n)k. (5)

For the two first iterations the formula (4) is not defined

and, consequently, it is necessary to assign appropriate

initial values. A choice which has given excellent results is

the following.

1) First Iteration: Assign to X,, ~ the values obtained

when all voltage-generator-type elements are short-cir-

cuited and all the current-generator-type elements are

open-circuited, i.e., setting v!(t) = v~(t) = . . . = u;(t)=
i~(t)=ij(t)= . . . =i~(t)= O.

2) Second Iteration: Use a direct iteration, i.e., (Xi, .)2=

(~,n)l.

Finally, note that in many cases the nonlinear element

characteristics are such that the element may be considered

as a voltage-generator type or as a current generator type.

When a truncation is performed, different solutions are

obtained depending on the choice, Since truncation of

voltages implies short-circuiting (open-circuiting for cur-

rents) the harmonics not considered, the choice of the

generator type is suggested by the loading conditions

established by the circuit at these harmonics.

III. APPLICATION TO THE NONLINEAR ANALYSIS OF

A PUMPED DIODE

The waveguide diode mixer analyzed by Kerr [4] was

used by Hicks and Khan [5] to show the speed advantage

their method has over Kerr’s approach. The same example

has been selected to compare the iteration algorithm de-
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Fig. 3. (a) Equivalent circuit of Kerr’s waveguide diode mixer. (b) The
same circuit but rearranged. Parameter values are: i.= 5 nA, a =40 V-1.

scribed in this paper with the one proposed by Hicks and

Khan.

The equivalent circuit of Kerr’s waveguide mixer is

represented in Fig. 3(a). The values of Zg(~ ) correspond-

ing to the 16 harmonics considered in the analysis can be

found in [4]. Since this impedance approaches short-circuit

conditions with increasing frequency, the voltage Vd( t )

must be selected as unknown variable. Fig. 3(b) shows the

circuit after the rearrangement described in Section II.

It is evident that the harmonic components of the un-

known are given by

[JL,nl=[-zg,n
[1

~]. +,.

g, n
(6)

where ‘d,., Vg,~, and Id,. are the Fourier coefficients
corresponding to Ud(t),Ug(t),and id(t), respectively, and

Zg, ~ denotes the value of Zg(f) at nfo.

For solving the nonlinear system Hicks and Khan have

proposed the iteration algorithm defined by

(xn).+,=Pn(E)k+(l-Pn)(xn), (7)

where p. is determined by convergence considerations [2].

These authors point out that no significant improvement is
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v IV. APPLICATION TO THE NONLINEAR ANALYSIS OF
100 v MICROWAVE MESFET’S ‘

Due to the great interest of MESFET large-signal cir-
V

v cuits, a, general nonlinear MESFET problem, which in-

0 v v ,V v eludes harmonics generators, frequency converters, andv v , !
.001 .01 .1 1 10 large-’signal amplifiers, has been used to demonstrate the

lDC
DC D 10DE CURRENT (MA) capability and usefulness of the method.

Fig. 4. Number of iterations required for solving Kerr’s waveguide
diode mixer (16 harmonics) versus dc diode current (0 —Hicks-Khan’s A. Nonlinear A4ESFET Model
algorithm with p = .025; v —proposed rdgonthm).

The model employed to simulate the nonlinear behavior

of the device (NE24406 MESFET by N. E. C.) is shown in

achieved by using variable and complex p. over constant Fig. 5. The nonlinear time-invariant elements are the

and real pn. Thus they proposed to use a real value of p capacitances Cl ( VI, Uz) and C2( Ul, U2), and the current

valid for all n. Probably after some trials, they set p = 0.025 generator i~ ( U1,U2); these elements depend on the voltages

[5] for the problem under consideration, but other situa- U1 and Uz while the other ones are linear (they have

tions could require a different optimum value for this constant values). Following Rauscher and Willing [6], the

parameter.
instantaneous current through the nonlinear capacitances

On the other hand, it is easy to prove that expression (4) are ‘bttined by

is equivalent to (7) with dvc(t)
iC(t)=C[vl(t), u2(t)]~. (9)

1
pn=

(E)~-(Fn)~-~ “
(8)

The elements of this nonlinear model have been de-

1- (x.), -(x.),-l termined from the static l~c – V~~ characteristics and the

measured small-signal S-parameters (2–12 GHz) at differ-

Thus in the proposed algorithm p. is complex and takes ent bias conditions [7]. A two-dimensional interpolation [8]

different values for each iteration. enables the values of the functions Cl( Vl, V2), C2( U1, V2),

Fig. 4 shows the number of iterations required to reach and i~( VI, V2) to be calculated at every point. Extrapola-

te solution by both methods for several injection levels. tions have been used outside the characterization ranges.

No more than 400 iterations were allowed. Convergence is This nonlinear MESFET model has shown to be valid at

achieved when the voltage reflection coefficient between least up to 12 GHz (maximum check frequency).

the boundary condition impedance ((Vg, ~ – Zg, ~1~,~)/1~ ~)

imposed to the device by the external circuit and the deice B. Nonlinear Analysis

impedance (Vd, ~/id,. ) is (in magnitude) less than 0.01 The general structure of a wide family of large-signal

(– 40 dB) at every harmonic. MESFET circuits, which includes harmonics generators,

Note that the proposed algorithm is more efficient than frequency converters, and large-signal amplifiers, is repre-

Hicks–Khan’s with fixed p up to I~C = 3 mA. The ad- sented in Fig. 6(a). In this figure V~ol and V~02 are

vantages of the latter technique above this value of diode periodic sources, VB, and VB2are dc bias, and the networks

current are uncompensated by the high number of itera- 1 and II are arbitrary linear networks.

tions it needs at low injection levels. The Hicks–Khan Replacing the device by its model and taking into account

algorithm can be made faster by choosing p appropriately that networks A and B (Fig. 5) are linear, the general

for each injection level. However, the proposed algorithm problem of Fig. 6(a) is transformed into that shown in Fig.

does not require any parameter to be chosen and repre- 6(b), where Z., v=, and Z~, v~ represent the Thevenin

sents an excellent compromise between good convergence equivalent generators of the circuits connected at gate and

characteristics at both low and high injection levels. drain of the device, respectively.



728 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-31, NO. 9, SEPTEMRER 1983

According to Section II, the voltages Ul(t) and Uz(t),

controlling all the nonlinearities of the circuit, must be

chosen as unknown variables. Considering the capacitances

Cl( Ul, U2) and Cz( Ul, Uz) as current-generator-type nonlin-

ear elements, the circuit of Fig. 6(b) can be rearranged in

the way indicated in Fig. 6(c).

The currents it,(t) and it,(t) corresponding to the

capacitances Cl and C2 are related to the unknown vari-

ables by

dul(t)
ic,(t)=cl(ul, u,)~ (lo)

ic,(t)=c,(vl, u,)$[u,(t)-u,(t)l (11)

while i~ ( t ) is directly obtained from i~ ( VI, Uz).

It is easy to prove that the harmonic components of the

unknowns are given by

[1

vl,n

v2, n

[

-(zn+za, n) -Za,n -Zn 1 0——
– Zn z b,n ‘( Zn+Zb,n) O 1 1

!1
I Cl, n

I C2, n

- Im, ~ . (12)

v a,n

vb,n

where ICI, ~, ICI, ~, and 1~ ~ are the Fourier coefficients of

icl(t), it,(t), and ire(t),re~pectively, Z. = R + jntiOL, Z=, ~,
and Zb,. denote the values of Za( ~) and Zb( ~ ), respec-

tively, at n&, and n = 0,1,2,. ... N, if only N harmonics are

considered.

Note that is is not necessary to compute icl(t) and it,(t)

because their Fourier coefficients can be obtained by

c,,. = ,~Nj@C~,.-#l,k
I (13)

c,,. = ,=~Nj@C~,.-~(Vl,k- Lk)I (14)

where Cl, ~ and C2,j are the Fourier coefficients of Cl( Ul, U2)

and C2( UI, U2), respectively. Then, time-domain calcula-
tions are reduced to computing the instantaneous values of

the different nonlinear characteristics determining their

Fourier coefficients via DFT or FFT.

The resulting nonlinear system of 2(N + 1) equations can

be solved by the iteration technique described in Section II.

Observe that the values of the unknowns corresponding to

the first iteration are given by

(V~,.)l=u,. (fi,n)l=vb,n (15)

forn=0,1,2,. ..,N.
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Fig. 6. (a) The generaf nonlinear MESFET problem (large-signaf

amplifiers, harmofics generators, and frequency convertors). (b) Trans-
formed. (c) Rearranged.

C. Application: Ana@is of a MESFET Frequency Doubler

To illustrate the capabilities of the proposed technique

and to check its convergence characteristics, a frequency

doubler at 2 GHz has been designed and analyzed.

After selecting appropriate bias conditions (V& =

– 2.0 V, V~~ = 3.0 V) near the knee of the 1~~ – V&

characteristics, the analysis technique was used to de-

termine the device response for different load conditions.

With 50 Q at both ports, the technique has been able to

handle 12 harmonics with no convergence problems [7].

For a selected incident power level the optimum load at the

second harmonic was determined. The impedances pre-

sented to the device at the fundamental and harmonics

other than second (six harmonics were considered) were

then modified in order to study their influence on the

output power at the second harmonic. It was found that

they had no influence because calculated variations of this

output power were less than 1 dB.

A prototype was constructed. The input network used a

quarter-wave transformer to reduce the high reflection of

the device at 2 GHz and presented a reactive impedance at
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the second harmonic. The output network synthesized the

previously determined optimum load at the second

harmonic and included a stub to improve the output

spectrum. The actual impedances presented by these net-

works to the device were measured up to the sixth harmonic

and were used to compute the device response in such

0
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Fig. 9. Measured (points) and predicted (lines) multiplication gain.
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Fig. 10. MESFET frequency doubler waveforms. (V&= – 2.0 V, V~~ =
3.0 V, Pin== 2.8 dBm).

conditions for different incident power levels (a complete

description of the measured impedances and the nonlinear

MESFET model can be found in [7]).

Voltage reflection coefficients (as defined in the analysis

of the pumped diode), at the terminal planes of the MES-

FET, were utilized as convergence parameters. Conver-

gence was deemed to occur when they were (in magnitude)

less than 0.01 ( – 40 dB) at every harmonic. Convergence

was achieved in all the cases analyzed and the required

number of iterations as a function of incident power is

shown in Fig. 7. Note that no more than 35 iterations were

necessary to reach the solution in all the cases. Similar

performance was obtained for other bias conditions [7].

The measured and predicted output powers at the sec-

ond harmonic and the multiplication gain (ratio of the
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second harmonic output

frequency input power), at
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power to the fundamental [21

three different bias conditions,

are represented in Figs. 8 and 9, respectively. Similar [31

agreement between measured and predicted characteristics

has been observed up to the sixth harmonic [7]. Typical

waveforms are plotted in Fig, 10. [4]

V. CONCLUSIONS

A new method for determination of the steady-state
[5]

response of nonlinear microwave circuits with periodic

excitation has been described. It has been successfully [b]

applied to the analysis of a pumped diode and a MESFET

frequency doubler. Its ability to handle large number of [71

harmotics and nonlinearities has been confirmed.

The reduction in time-domain calculations obtained by [8]

systematic selection of the unknown variables, and the

excellent convergence characteristics shown by the pro-

posed algorithm, enable the described method to compete

advantageously with other techniques and to be a powerful

tool in the design of nonlinear microwave circuits, includ-

ing GaAs monolithic integrated circuits.
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