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Numerical Steady-State Analysis of
Nonlinear Microwave Circuits
with Periodic Excitation

CARLOS CAMACHO-PENALOSA, MEMBER, IEEE

Abstract —A new method for determining the steady-state response of
nonlinear microwave circuits with periodic excitation is proposed. The
method minimizes time-domain calculations by introducing a criterion for
selecting the variables to be considered as unknowns and for solving the
resulting nonlinear system by a new and efficient algorithm. It has ex-
hibited the capability for handling a large number of harmonics and
nonlinearities. To illustrate the generality and usefulness of the method, a
pumped diode and a MESFET frequency doubler are analyzed.

I. INTRODUCTION

HE OPTIMUM design of microwave circuits contain-

ing nonlinear solid-state devices requires an accurate
technique for predicting their nonlinear performance. The
most common techniques are based on the analysis of a
circuit-type model which simulates the nonlinear behavior
of the device. Much work has been done on microwave
solid-state device modeling and it is possible to find ap-
propriate models for practically any device. However, the
high computational cost of the numerical methods used to
analyze the interaction with the external circuit is the
major drawback of these techniques.

Nonlinear microwave circuits have two important fea-
tures: 1) the device-external circuit model usually includes
many linear elements; and 2) in most cases the excitation is
periodic and only the steady-state response is required. The
harmonic balance method is preferable to time-domain
techniques because it avoids the numerical integration of
the circuit dynamic equations, but it has a serious disad-
vantage in the large number of unknown variables.

In order to reduce the number of unknown variables,
several authors have proposed separating the nonlinear
network into linear and nonlinear subnetworks, and con-
sidering as unknowns the voltages/currents [1], [2] or the
power waves [3] at all the terminals. However, no general
rules for optimum circuit partitioning have been given.
After partitioning, frequency-domain and time-domain
equations are written for the linear and nonlinear subnet-
works, respectively. The response of the network is then
described by a system of nonlinear equations whose un-
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knowns are the harmonic components of the electrical
magnitudes at the terminals.

Several numerical techniques have been employed to
solve this nonlinear system. Nakhla and Vlach [1] proposed
using a gradient technique for minimizing a certain error
function. Filicori et al., [3] used the Newton-Raphson
method and avoided convergence problems by increasing
step-by-step the nonlinearities of the system. Both methods
consume excesive computer time because they must calcu-
late derivatives and, as a result, they become impracticable
when many harmonics and/or nonlinearities are consid-
ered. One interesting technique has been reported by Hicks
and Khan [2], which has exhibited good convergence char-
acteristics when a large number of harmonics are consid-
ered and only does one calculation of the functions per
iteration.

In this paper, an analysis method is described which
avoids the partitioning problem by introducing a criterion
for selecting the variables to be considered as unknowns
and solving the resulting nonlinear system by a new and
efficient algorithm. This method reduces time-domain
analysis to the computation of currents and/or voltages at
the nonlinear elements from the variables they depend on,
and consequently, takes full advantage of the linearities of
the network. The waveguide diode mixer analyzed by Kerr
[4] is used to compare the iteration algorithm herein pro-
posed with the one by Hicks and Khan. As a demonstra-
tion of the capability and usefulness of the method, a
general nonlinear MESFET problem including large-signal
amplifiers, frequency converters, and harmonics generators
is studied. One application, a MESFET frequency doubler,
is completely analyzed.

II. MEgTHOD

Consider the situation represented in Fig. 1, where an
M-port arbitrary network, which contains both linear and
nonlinear elements, is excited by M periodic sources ( P-
voltage generators and Q-current generators, hence M = P
+ Q) all with the same period. It is assumed that a
steady-state solution exists and the objective is to find it.

Every nonlinear element of the network can be consid-
ered either as a voltage generator or as a current generator,
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Fig. 1. The general nonlinear problem.

controlled by other voltages and /or currents of the circuit.
Let T+ U be the number of nonlinear elements (7-voltage
generator-type elements and U-current generator-type ele-
ments) and let vy (), v3(2),- - -, vR(2), i (1), i}(2),- - -,i%(¢)
be the voltages and currents controlling all the nonlinear
elements. The aim of the method is to consider these
voltages and currents as the unknown variables. Note that,
by this way, time-domain analysis is reduced to the compu-
tation of the response (voltage or current) of every nonlin-
ear element from the magnitudes it depends on and that
the nonlinear problem is solved if these magnitudes are
determined.

The circuit in Fig. 1 can be rearranged in the way
indicated in Fig. 2 where a (M + R+ S+ T+ U)-port
linear network, which includes all the linear elements of the
primitive circuit, has M ports excited by independent
sources, R ports open-circuited, S ports short-circuited,
and each of the other T'+ U ports loaded by one nonlinear
element. The voltages and currents at the open-circuited
and short-circuited ports, respectively, are the variables
controlling all the nonlinear elements. If these magnitudes
are known, voltages and currents at the nonlinear elements
can be calculated and, after that, any electrical magnitude
of the circuit can be obtained by linear transformations.

If the network is in the steady-state with periodic re-
sponse of period T, there will only be nf, (n-integer)
frequency components in the circuit and every magnitude
can be expressed by Fourier series

[+ o]
L X,exp(Jjnwgt)

n=—eoo

2af,.

x(t)= (1)

with wy =27/T; =
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According to Fig. 2, it is possible to write for every
frequency of interest
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where V7, I?,, VP, I} ., V&, and I}, are the Fourier

coefficients of the functions v"(t), y(t), J"(t), iL(0), vE(1),
and 1”(t), respectively, and [A ] is a matrix of (R + S)x(T
+ U+ M) elements obtained by linear analysis of the
network at the frequency nf,,.

Since V{ ,, V& e sV I 13 0 1}, , ate nonlin-
ear functions of vy(t), v3(¢),* * -, vR(2), if (1), i3(¢)," - -, i3(2),
the relation (2) is equivalent to an infinite system of
nonlinear equations of the form

)(i,n =F;‘,n()?la )?2" : "A—,R«rs)

(3)
where

1,2,---,R+ S

0,1,2,---

X; ()(i,p Xi,z"")-
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If only N harmonics are considered the problem is
reduced to solving a system of (N + 1) R + S) nonlinear
equations. Its solution can be numerically found using the
iteration technique defined by the expression

(Xi,n)k+1 = (F )k
[(F )k ( n)k l] [( n)k (F'i,n)k]
[(F )k (‘Xl n)k] [(F;',n)k—l_()(i,n')k~1]
(4)
Note that the proposed iteration technique is a direct
iteration “corrected” to take into account the behavior of
the functions in the last two iterations and that it is only

necessary to compute the values of the functions F, ,
each step.
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Fig. 2. The general nonlinear problem (rearranged).

The iteration formula (4) fails if the denominator of the
“correction factor” is equal to zero. In this case a direct
iteration is used, i.e.,

(Xi,n)k+1:(E,n)k- (5)

For the two first iterations the formula (4) is not defined
and, consequently, it is necessary to assign appropriate
initial values. A choice which has given excellent results is
the following.

1) First Iteration: Assign to X, , the values obtained
when all voltage-generator-type elements are short-cir-
cuited and all the current-generator-type elements are

open-circuited, i.e., setting vj(¢)=0v5(¢)="--- =v5(¢) =
() =iy(t) =+ =if (1) =0,

2) Second Iteration: Use a direct iteration, i.e., (X; ,), =
(E,n)l'

Finally, note that in many cases the nonlinear element
characteristics are such that the element may be considered
as a voltage-generator type or as a current generator type.
When a truncation is performed, different solutions are
obtained depending on the choice. Since truncation of
voltages implies short-circuiting (open-circuiting for cur-
rents) the harmonics not considered, the choice of the
generator type is suggested by the loading conditions
established by the circuit at these harmonics.

III. APPLICATION TO THE NONLINEAR ANALYSIS OF

A PumPED DIODE

The waveguide diode mixer analyzed by Kerr [4] was
used by Hicks and Khan [5] to show the speed advantage
their method has over Kerr’s approach. The same example
has been selected to compare the iteration algorithm de-

LINEAR
NI'TWORR

Fig. 3. (a) Equivalent circuit of Kerr’s waveguide diode mixer. (b) The
same circuit but rearranged. Parameter values are: iy = 5 nd, a =40 V1,

scribed in this paper with the one proposed by Hicks and
Khan.

The equivalent circuit of Kerr’s waveguide mixer is
represented in Fig. 3(a). The values of Z,(f) correspond-
ing to the 16 harmonics considered in the analysis can be
found in [4]. Since this impedance approaches short-circuit
conditions with increasing frequency, the voltage v,(t)
must be selected as unknown variable. Fig. 3(b) shows the
circuit after the rearrangement described in Section I1.

It is evident that the harmonic components of the un-
known are given by

Idn
AR e

where V, ,, V, ,, and I, , are the Fourier coefficients
corresponding to v,(), v,(¢), and i,(z), respectively, and
Z,, , denotes the value of Z,(f) at nf,.

For solving the nonlinear system Hicks and Khan have

proposed the iteration algorithm defined by

(Xn)k+1=pn(F;z)k+(1_pn)(Xn)k (7)
where p, is determined by convergence considerations [2].
These authors point out that no significant improvement is
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Fig. 4. Number of iterations required for solving Kerr’s waveguide
diode mixer (16 harmonics) versus dc diode current (O —Hicks-Khan’s
algorithm with p =.025; v —proposed algorithm).

achieved by using variable and complex p, over constant
and real p,. Thus they proposed to use a real value of p
valid for all n. Probably after some trials, they set p = 0.025
[5] for the problem under consideration, but other situa-
tions could require a different optimum value for this
parameter.

On the other hand, it is easy to prove that expression (4)
is equivalent to (7) with

1
_ (Ex)k _(Ez)k—l .
(Xn)k _(Xn)k—l

®)

b=
1

Thus in the proposed algorithm p, is complex and takes
different values for each iteration.

Fig. 4 shows the number of iterations required to reach
the solution by both methods for several injection levels.
No more than 400 iterations were allowed. Convergence is
achieved when the voltage reflection coefficient between
the boundary condition impedance (V, , — Z, ,1; »)/14,,)
imposed to the device by the external circuit and the device
impedance (V, ,/1I,,) is (in magnitude) less than 0.01
(—40 dB) at every harmonic.

Note that the proposed algorithm is more efficient than
Hicks-Khan’s with fixed p up to I, =3 mA. The ad-
vantages of the latter technique above this value of diode
current are uncompensated by the high number of itera-
tions it needs at low injection levels. The Hicks—Khan
algorithm can be made faster by choosing p appropriately
for each injection level. However, the proposed algorithm
does not require any parameter to be chosen and repre-
sents an excellent compromise between good convergence
characteristics at both low and high injection levels.
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Fig. 5. Nonlinear MESFET model.

IV. APPLICATION TO THE NONLINEAR ANALYSIS OF
MicrRowAVE MESFET’s

Due to the great interest of MESFET large-signal cir-
cuits, a.general nonlinear MESFET problem, which in-
cludes harmonics generators, frequency converters, and
large-signal amplifiers, has been used to demonstrate the
capability and usefulness of the method.

A. Nonlinear MESFET Model

The model employed to simulate the nonlinear behavior
of the device (NE24406 MESFET by N.E.C.) is shown in
Fig. 5. The nonlinear time-invariant elements are the
capacitances C;(v,,v,) and C,(v,,v,), and the current
generator i,,(vy, v, ); these elements depend on the voltages
v, and v, while the other ones are linear (they have
constant values). Following Rauscher and Willing {6], the
instantaneous current through the nonlinear capacitances
are obtained by

i) =Clo 02 )

The elements of this nonlinear model have been de-
termined from the static I, — V¢ characteristics and the
measured small-signal S-parameters (2-12 GHz) at differ-
ent bias conditions [7]. A two-dimensional interpolation [8]
enables the values of the functions C (v, v,), Cy(vy, 1),
and i,(v, v,) to be calculated at every point. Extrapola-
tions have been used outside the characterization ranges.
This nonlinear MESFET model has shown to be valid at
least up to 12 GHz (maximum check frequency).

B. Nonlinear Analysis

The general structure of a wide family of large-signal
MESFET circuits, which includes harmonics generators,
frequency converters, and large-signal amplifiers, is repre-
sented in Fig. 6(a). In this figure V;, and V;, are
periodic sources, V3 and V3 are dc bias, and the networks
I and II are arbitrary linear networks.

Replacing the device by its model and taking into account
that networks A and B (Fig. 5) are linear, the general
problem of Fig. 6(a) is transformed into that shown in Fig,
6(b), where Z, v,, and Z,, v, represent the Thevenin
equivalent generators of the circuits connected at gate and
drain of the device, respectively.
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According to Section II, the voltages v;(¢) and v,(1),
controlling all the nonlinearities of the circuit, must be
. chosen as unknown variables. Considering the capacitances
Ci(vy,v,) and C,(v,, v,) as current-generator-type nonlin-
ear elements, the circuit of Fig. 6(b) can be rearranged in
the way indicated in Fig. 6(c).

The currents i () and i (¢) corresponding to the
capacitances C; and C, are related to the unknown vari-
ables by

dvy(t)
i (10)

(11)

icl(t) =Cy(vy1,0,)

ic (1) = Co (01, 02) 2 [04(1) = s (1)]

while 7,,(¢) is directly obtained from i,,(v;, v,).
It is easy to prove that the harmonic components of the
unknowns are given by

Vl,n
Vo

J-(z+z,.) -z, -z, 1 0]
| - Z, z,, —(Z2,+%Z,,) 0 1
Ie, »

I, .

I, . | (12)
Van

[ Vo,n

where I ,, I, ,, and I, , are the Fourier coefficients of
ic(t),ic(t), and i, (2), respectively, Z, = R+ jnw,L,Z, ,
and Z, , denote the values of Z,(f) and Z,(f), respec-
tively, at nf,, and n =0,1,2,- - -, N, if only N harmonics are
considered.

Note that is is not necessary to compute i, (¢) and i (¢)
because their Fourier coefficients can be obtained by

N

> JwokCy V14
k=—N

(13)

ICI,n =

N
IC;_,n= Z j‘*’okcz,n—k(Vl,k_Vz,k) (14)
k=—N

where C, , and C, ; are the Fourier coefficients of C;(vy, v,)
and C,(v,,v,), respectively. Then, time-domain calcula-
_tions are reduced to computing the instantaneous values of
the different nonlinear characteristics determining their
Fourier coefficients via DFT or FFT.

The resulting nonlinear system of 2( N + 1) equations can
be solved by the iteration technique described in Section II.
Observe that the values of the unknowns corresponding to
the first iteration are given by

(Vl,n)1=I/a,n (I/Z,n)leb,n’
forn=20,1,2,---,N.

(15)
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Fig. 6. (a) The general nonlincar MESFET problem (large-signal
amplifiers, harmonics generators, and frequency convertors). (b) Trans-
formed. (c) Rearranged.
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C. Application: Analysis of a MESFET Frequency Doubler

To illustrate the capabilities of the proposed technique
and to check its convergence characteristics, a frequency
doubler at 2 GHz has been designed and analyzed.

After selecting appropriate bias conditions (Vg =
=20 V, Vps=3.0 V) near the knee of the I, — V),
characteristics, the analysis technique was used to de-
termine the device response for different load conditions.

With 50 Q at both ports, the technique has been able to
handle 12 harmonics with no convergence problems [7].
For a selected incident power level the optimum load at the
second harmonic was determined. The impedances pre-
sented to the device at the fundamental and harmonics
other than second (six harmonics were considered) were
then modified in order to study their influence on the
output power at the second harmonic. It was found that
they had no influence because calculated variations of this
output power were less than 1 dB.

A prototype was constructed. The input network used a
quarter-wave transformer to reduce the high reflection of
the device at 2 GHz and presented a reactive impedance at
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the second harmonic. The output network synthesized the
previously determined optimum load at the second
harmonic and included a stub to improve the output
spectrum. The actual impedances presented by these net-
works to the device were measured up to the sixth harmonic
and were used to compute the device response in such
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Fig. 10. MESFET frequency doubler waveforms. (Vg =—2.0V, Vg =
30V, P, =28dBm).

conditions for different incident power levels (a complete
description of the measured impedances and the nonlinear
MESFET model can be found in [7]).

Voltage reflection coefficients (as defined in the analysis
of the pumped diode), at the terminal planes of the MES-
FET, were utilized as convergence parameters. Conver-
gence was deemed to occur when they were (in magnitude)
less than 0.01 (—40 dB) at every harmonic. Convergence
was achieved in all the cases analyzed and the required
number of iterations as a function of incident power is
shown in Fig. 7. Note that no more than 35 iterations were
necessary to reach the solution in all the cases. Similar
performance was obtained for other bias conditions [7).

The measured and predicted output powers at the sec-
ond harmonic and the multiplication gain (ratio of the
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second harmonic output power to the fundamental
frequency input power), at three different bias conditions,
are represented in Figs. 8 and 9, respectively. Similar
agreement between measured and predicted characteristics
has been observed up to the sixth harmonic [7] Typical
waveforms are plotted in Fig. 10.

V. CONCLUSIONS

A new method for determination of the steady-state
response of nonlinear- microwave circuits with periodic
excitation has ‘been described. It has been successfully
applied to the analysis of a pumped diode and a MESFET
frequency doubler. Its ability to handle large number of
harmonics and nonlinearities has been confirmed.

The reduction in time-domain calculations obtained by
systematic selection of the unknown variables, and the
excellent convergence characteristics shown by the pro-
posed algorithm, enable the described method to compete
advantageously with other techniques and to be a powerful
tool in the design of nonlinear microwave circuits, includ-
ing GaAs monolithic integrated circuits.
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